H2B- and H3-specific histone deacetylases are required for DNA methylation in Neurospora crassa.
نویسندگان
چکیده
Neurospora crassa utilizes DNA methylation to inhibit transcription of heterochromatin. DNA methylation is controlled by the histone methyltransferase DIM-5, which trimethylates histone H3 lysine 9, leading to recruitment of the DNA methyltransferase DIM-2. Previous work demonstrated that the histone deacetylase (HDAC) inhibitor trichostatin A caused a reduction in DNA methylation, suggesting involvement of histone deacetylation in DNA methylation. We therefore created mutants of each of the four classical N. crassa HDAC genes and tested their effect on histone acetylation levels and DNA methylation. Global increases in H3 and H4 acetylation levels were observed in both the hda-3 and the hda-4 mutants. Mutation of two of the genes, hda-1 and hda-3, caused partial loss of DNA methylation. The site-specific loss of DNA methylation in hda-1 correlated with loss of H3 lysine 9 trimethylation and increased H3 acetylation. In addition, an increase in H2B acetylation was observed by two-dimensional gel electrophoresis of histones of the hda-1 mutant. We found a similar increase in the Schizosaccharomyces pombe Clr3 mutant, suggesting that this HDAC has a previously unrecognized substrate and raising the possibility that the acetylation state of H2B may play a role in the regulation of DNA methylation and heterochromatin formation.
منابع مشابه
DCAF26, an Adaptor Protein of Cul4-Based E3, Is Essential for DNA Methylation in Neurospora crassa
DNA methylation is involved in gene silencing and genome stability in organisms from fungi to mammals. Genetic studies in Neurospora crassa previously showed that the CUL4-DDB1 E3 ubiquitin ligase regulates DNA methylation via histone H3K9 trimethylation. However, the substrate-specific adaptors of this ligase that are involved in the process were not known. Here, we show that, among the 16 DDB...
متن کاملMethylation of histone H3 lysine 36 is required for normal development in Neurospora crassa.
The SET domain is an evolutionarily conserved domain found predominantly in histone methyltransferases (HMTs). The Neurospora crassa genome includes nine SET domain genes (set-1 through set-9) in addition to dim-5, which encodes a histone H3 lysine 9 HMT required for DNA methylation. We demonstrate that Neurospora set-2 encodes a histone H3 lysine 36 (K36) methyltransferase and that it is essen...
متن کاملEpigenetic Control of Phenotypic Plasticity in the Filamentous Fungus Neurospora crassa
Phenotypic plasticity is the ability of a genotype to produce different phenotypes under different environmental or developmental conditions. Phenotypic plasticity is a ubiquitous feature of living organisms, and is typically based on variable patterns of gene expression. However, the mechanisms by which gene expression is influenced and regulated during plastic responses are poorly understood ...
متن کاملProtein phosphatase PP1 is required for normal DNA methylation in Neurospora.
Covalent modifications of histones integrate intracellular and extracellular cues to regulate the genome. H3 Lys 9 methylation (H3K9me) can direct heterochromatin formation and DNA methylation, while phosphorylation of H3 Ser 10 (H3S10p) drives gene activation and chromosome condensation. To examine the relationship between H3S10p, H3K9me, and DNA methylation in Neurospora crassa, we built and ...
متن کاملRelics of repeat-induced point mutation direct heterochromatin formation in Neurospora crassa.
Both RNAi-dependent and -independent mechanisms have been implicated in the establishment of heterochromatin domains, which may be stabilized by feedback loops involving chromatin proteins and modifications of histones and DNA. Neurospora crassa sports features of heterochromatin found in higher eukaryotes, namely cytosine methylation (5mC), methylation of histone H3 lysine 9 (H3K9me), and hete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 186 4 شماره
صفحات -
تاریخ انتشار 2010